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Gibb L, Gentner TQ, Abarbanel HDI. Inhibition and recurrent
excitation in a computational model of sparse bursting in song nucleus
HVC. J Neurophysiol 102: 1748–1762, 2009. First published June 10,
2009; doi:10.1152/jn.00670.2007. The telencephalic premotor nu-
cleus HVC is situated at a critical point in the pattern-generating
premotor circuitry of oscine songbirds. A striking feature of HVC’s
premotor activity is that its projection neurons burst extremely
sparsely. Here we present a computational model of HVC embodying
several central hypotheses: 1) sparse bursting is generated in bistable
groups of recurrently connected robust nucleus of the arcopallium
(RA)–projecting (HVCRA) neurons; 2) inhibitory interneurons termi-
nate bursts in the HVCRA groups; and 3) sparse sequences of bursts
are generated by the propagation of waves of bursting activity along
networks of HVCRA neurons. Our model of sparse bursting places
HVC in the context of central pattern generators and cortical networks
using inhibition, recurrent excitation, and bistability. Importantly, the
unintuitive result that inhibitory interneurons can precisely terminate
the bursts of HVCRA groups while showing relatively sustained
activity throughout the song is made possible by a specific constraint
on their connectivity. We use the model to make novel predictions that
can be tested experimentally.

I N T R O D U C T I O N

In oscine songbirds, the telencephalic nucleus HVC (used as
the proper name; Reiner et al. 2004) is a key structure of the
premotor pathway, projecting both to the premotor nucleus RA
(the robust nucleus of the arcopallium) and to a basal ganglia
nucleus, area X, which forms the first step of a basal ganglia–
thalamocortical pathway essential for song learning (the ante-
rior forebrain pathway; Abarbanel et al. 2004a,c; Bottjer et al.
1984; Brainard and Doupe 2000; Perkel 2004; Scharff and
Nottebohm 1991; Sohrabji et al. 1990).

HVC contains three broad classes of neuron: RA-projecting
(HVCRA), X-projecting (HVCX), and interneurons (HVCI)
(Dutar et al. 1998; Fortune and Margoliash 1995; Kubota and
Taniguchi 1998; Mooney 2000; Nixdorf et al. 1989; Rauske et
al. 2003; Shea 2004). Using paired intracellular recordings and
antidromic stimulation in slices, Mooney and Prather (2005)
found connections between members of all three of these
classes and among HVCRA neurons.

HVCRA neurons, which are the HVC projection neurons that
participate directly in the adult song control pathway, have
been shown to exhibit temporally sparse bursting during sing-
ing in zebra finches (Hahnloser et al. 2002; Kozhevnikov and
Fee 2007): in this study, each neuron bursts at most once per

song motif. Each burst consists of 4.3 � 1.3 spikes and has a
duration of 5.1 � 1.8 ms (Kozhevnikov and Fee 2007). Similar
sparse bursting also occurs spontaneously during sleep (Hahn-
loser and Fee 2007; Hahnloser et al. 2002, 2006). By contrast,
HVCI neurons spike and burst densely throughout the song
(Hahnloser et al. 2002; Kozhevnikov and Fee 2007). We and
others have previously used this sparse bursting in models of
birdsong (Abarbanel et al. 2004b; Fiete et al. 2004, 2007). The
basis of sparse bursting in the neuronal circuitry of HVC
remains unknown and is the focus of the model that we
describe herein. In the following companion paper (Gibb et al.
2009), we present a model of the potential role of neural
feedback to HVC in syllable sequencing.

The present study has the goal of developing a numerical
model of HVC sparse bursting in which inhibitory interneurons
play a central role. In our HVC model, the sparse bursting
associated with any syllable is generated by the propagation of
a wave of activity along a network of locally excitatory
HVCRA neurons interacting with globally inhibitory HVCI
neurons. We represent this network organization of HVCRA
neurons as a chain of bistable clusters. We see our model as a
set of hypotheses, based on experimental data and expressed in
quantitative language, from which we can derive predictions to
be tested experimentally.

A portion of this work previously appeared in abstract form
(Gibb and Abarbanel 2006).

M E T H O D S

We implemented all models in C�� using a neural simulation
framework developed by T. Nowotny and extended by L. Gibb, using
a Runge–Kutta 6(5) algorithm with a relative error of 10�6, and we
performed analyses of model output in MATLAB. We also tested
some of the models in Fortran.

Basic spiking model

All neurons in our model are based on a single-compartment
Hodgkin–Huxley-type neuron with just Na�, K�, and leak currents
(Destexhe and Sejnowski 2001; Destexhe et al. 1998a; Traub and
Miles 1991). The membrane potential of this basic spiking model
follows the equation

Cm

dV�t�

dt
� �gNam�t�3h�t��V�t� � ENa� � gKn�t�4�V�t� � EK� � gL�V�t�

� EL� � Isyn � IDC

where V(t) is the membrane potential; gNa, gK, and gL are the maximal
conductances of the Na�, K�, and leak currents; ENa, EK, and EL are
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the reversal potentials of the Na�, K�, and leak currents; Isyn is the
sum of synaptic currents; and IDC is the value of an injected current
(IDC � 0, unless otherwise noted). The gating variables X(t) � {m(t),
h(t), n(t)} are taken to satisfy the first-order kinetics

dX�t�

dt
� �X�V�t���1 � X�t�� � �X�V�t��X�t�

where �X(V) and �X(V) are given in Table 1.
Although the ionic currents of song system neurons have not yet

been well characterized, in many cases the responses of neurons to
depolarizing and hyperpolarizing current pulses have been recorded
in vitro. To match such data from HVCRA and HVCI neurons, we
included and modified appropriate currents characterized in mamma-
lian neurons. This level of modeling is appropriate to our long-term
goal of spanning cellular, circuit, network, and systems levels of
analysis in the song system. As the model develops and new data are
obtained, we will replace these neurons with more complex ones
where appropriate. We will also explore simplified models to deter-
mine which details are essential to the network behavior.

HVCRA neurons

We assumed in the present work that the HVCRA neurons that burst
sparsely during singing (Hahnloser et al. 2002; Kozhevnikov and Fee
2007) are of the same short dendrite (SD) class that burst sparsely
during bird’s own song (BOS) playback (Mooney 2000) and (follow-
ing Shea 2004) that these are the neurons that spike tonically in
response to depolarizing current injection. We fit our model to the
physiology described in detail by Kubota and Taniguchi (1998) for
their type IIa neurons. There is also a “phasic” HVCRA type, which
has been identified with the furry dendrite class (Fortune and Margo-
liash 1995; Nixdorf et al. 1989; Shea 2004; see DISCUSSION). To model
Kubota and Taniguchi’s HVCRA neurons, we added two voltage-
gated K� currents to the basic spiking model described earlier and
modified parameters from those used by Destexhe et al. (1998a) for
cortical pyramidal neurons. To better match the in vitro data, we
decreased the reversal potential EL of the leak current from �70 to
�83 mV and slightly shifted the voltage-dependent rate functions for
the Na� and K� channels (�m, �m, �h, �h, �n, and �n; see Table 1 and
the value of VT) to raise the spike threshold.

The instantaneous spike frequency of these HVCRA neurons declines
rapidly over the first few action potentials and then declines much more
gradually thereafter during constant-current injection (Kubota and Tan-
iguchi 1998), which suggests that there are two timescales of spike-rate
adaptation. Since the currents underlying this behavior have not been

characterized in HVCRA neurons, we modified the voltage-gated K�

current IM, described by McCormick et al. (1993) and used by Destexhe
et al. (1998a) in their model of cortical pyramidal neurons. The modified
current IMs provides the slow component of adaptation and the modified
current IMf provides the fast component

IMs � gMs p�t��V�t� � EK�

and

IMf � gMf q�t��V�t� � EK�

where gMs and gMf are the maximal conductances of IMs and IMf. For
both IMs and IMf, we shifted the IM rate functions by �3 mV and
sharpened them so that small depolarizing current injections trigger
very little spike-frequency adaptation, whereas large injections trigger
strong adaptation, in accord with the in vitro data. To generate the rate
functions of IMf, we multiplied the rate functions of IM by a constant.
To prevent a postburst hyperpolarization that is not observed in the
data, we modified �q so that IMf rapidly deactivates below about �68
mV (see Table 1).

We adjusted the parameters to match the resting potential and the
instantaneous spike frequency as a function of time for different
injected currents described by Kubota and Taniguchi (1998; see
Supplemental Fig. S1).1 The parameter values for the HVCRA neuron
model were gNa � 50 mS/cm2, ENa � 45 mV, gK � 5 mS/cm2, EK �
�88 mV, gL � 0.1 mS/cm2, EL � �83 mV, Cm � 1 �F/cm2, VT �
�53 mV, gMs � 0.3 mS/cm2, and gMf � 0.8 mS/cm2.

HVCI neurons

To model HVCI neurons, we again built on the basic spiking model
described earlier. We modified parameters from those used by Des-
texhe et al. (1998a) to model cortical interneurons, adjusting the
parameters to match the resting potential and the instantaneous spike
frequency as a function of time for different injected currents de-
scribed by Kubota and Taniguchi (1998; see Supplemental Fig. S1).
The data reported by Kubota and Taniguchi (1998) and Dutar et al.
(1998) demonstrate that HVCI neurons have a depolarizing sag in
response to a hyperpolarizing current injection and show little spike-
rate adaptation. We represent this in the membrane voltage equation
by including Ih but no special K� currents

1 The online version of this article contains supplemental data.

TABLE 1. Rate functions of model neurons

Basic spiking model (Traub and Miles 1991)

�m�V� �
�0.32�V � VT � 13�

e��V�VT�13�/4 � 1
�m�V� �

0.28�V � VT � 40�

e�V�VT�40�/5 � 1

�h�V� � 0.128e��V�VT�17�/18 �h�V� �
4

e��V�VT�40�/5 � 1

�n�V� �
�0.032�V � VT � 15�

e��V�VT�15�/5 � 1
�n�V� � 0.5e��V�VT�10�/40

IMs and IMf currents of HVCRA neurons

�p�V� �
�10�4�V � 33�

e��V�33�/0.9 � 1
�p�V� �

10�4�V � 33�

e�V�33�/0.9 � 1

�q�V� �
�2 � 10�3�V � 33�

e��V�33�/0.9 � 1
�q�V� �

2 � 10�3�V � 33�

e�V�33�/0.9 � 1
�

0.2�V � 68�

e�V�68�/0.9 � 1
Ih current of HVCI neurons

r	�V� �
1

e�V�75�/5.5 � 1
�r�V� �

195 ms

e�V�71.9�/14.27 � e��89.3�V�/11.63

V is in millivolts. VT � �53 mV for HVCRA neurons; VT � �63.4 mV for HVCI neurons.
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Ih � ghr�t��V�t� � Eh�

where gh and Eh are the maximal conductance and reversal potential
of Ih, and

dr�t�

dt
�

r	�V�t�� � r�t�

�r�V�t��

where r	(V) and �r(V) are given in Table 1, based on Huguenard and
McCormick (1994). This �r(V) is 20 times smaller than that in the
model on which it is based. We made this modification solely to
improve the match of the model to the data of Kubota and Taniguchi
(1998) and Dutar et al. (1998) by speeding up the sag. This modifi-
cation can be justified by the broad range of Ih time constants reported
in different cortical and subcortical neurons, which depend on the
subunit composition of Ih channels (Aponte et al. 2006). The param-
eter values of the HVCI neuron model were gNa � 50 mS/cm2, ENa �
45 mV, gK � 10 mS/cm2, EK � �85 mV, gL � 0.15 mS/cm2, EL �
�64 mV, Cm � 1 �F/cm2, VT � �63.4 mV, gh � 0.07 mS/cm2, and
Eh � �40 mV.

Once fit to the in vitro data, the parameters of the neuron models
were held fixed; only synaptic strengths and network connectivity
were adjusted to achieve the desired network behavior.

Modeling synaptic currents

We modeled both excitatory and inhibitory synaptic currents with
the following equations (Destexhe and Sejnowski 2001; Destexhe et
al. 1994)

T�t� �
Tmax

1 � exp
��Vpre�t� � Vp�/Kp�

dr�t�

dt
� �T�t��1 � r�t�� � �r�t�

Isyn�t� � gsynr�t��Vpost�t� � Erev�

where T(t) is the concentration of neurotransmitter in the synaptic
cleft, Tmax is the maximal neurotransmitter concentration, Vpre(t) and
Vpost(t) are the membrane potentials of the presynaptic and postsyn-
aptic neurons, r(t) is the fraction of the receptors in the open state, gsyn

(gAMPA or gGABAA
) is the maximal synaptic conductance, and Erev

(EAMPA or EGABAA
) is the synaptic reversal potential.

The rate constants that we used are based on the time constants
of �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)–
and 	-aminobutyric acid type A (GABAA)–mediated currents re-
corded in mammalian neocortical neurons and interneurons in vitro
(Destexhe and Sejnowski 2001; Destexhe et al. 1994; Hestrin 1993).
AMPA receptors at excitatory synapses onto interneurons are about
twice as fast as those onto pyramidal neurons (Destexhe and Se-
jnowski 2001; Hestrin 1993).

For all synapses in our model, Tmax � 1.5 mM, Vp � 2 mV, and
Kp � 5 mV. For excitatory synapses, Erev � 0 mV. For excitatory
synapses onto HVCI neurons, � � 2.2 mM�1 ms�1 and � � 0.38
ms�1 (decay time constant 1/� � 2.6 ms). For excitatory synapses
onto all other neuron types, � � 1.1 mM�1 ms�1 and � � 0.19 ms�1

(1/� � 5.3 ms). For inhibitory synapses, � � 5.0 mM�1 ms�1 and
� � 0.18 ms�1 (1/� � 5.6 ms). In the reduced cluster model and the
chain models based on it, Erev � �83 mV for inhibitory synapses. In
the models with synapses of physiological strength (see the following
text), Erev � �88 mV to give inhibitory postsynaptic potentials
(IPSPs) a physiologically correct, nonzero amplitude near the HVCRA

resting potential of �83 mV. Mooney and Prather (2005) did not
measure Erev experimentally; our assumed value of �88 mV is similar
to, and slightly less negative than, the mean GABAA reversal potential
measured in neurons of the medial portion of the dorsolateral thalamic

nucleus (Person and Perkel 2005). This assumed value is necessarily
an informed guess, since Mooney and Prather did not report the
resting potentials of the neurons in which they measured IPSP am-
plitudes. Moreover, in two of the HVCI 3 HVCRA connections that
they reported, the PSP was depolarizing rather than hyperpolarizing.
However, we do not expect the precise value of Erev to be critical to
the behavior of the model, as long as it is below the spiking threshold.

Modeling temperature dependence of neurons and synapses

In simulations of in vivo activity, as a first approximation of the
temperature dependence of neurons and synapses, we scaled all rate
functions by a factor of 
(T1) � Q10

�T2�T1�/10, assuming a Q10 of 3 for
both neuronal and synaptic rates (Collingridge et al. 1984; Hodgkin
and Huxley 1952). Here, T2 is the brain temperature in vivo (assumed
to be 40°C) and T1 is the approximate temperature at which the
measurements were made in vitro. T1 is 32°C for neurons (Kubota and
Taniguchi 1998), 31°C for AMPA synapses (Destexhe and Sejnowski
2001; Destexhe et al. 1998b; Xiang et al. 1992), and 34°C for GABAA

synapses (Destexhe et al. 1998b, 2001; Otis and Mody 1992a,b).

Synapses of physiological strength

In some simulations, we used synapses of physiological strength,
based on the measurements of Mooney and Prather (2005). The values
of � and � for these synapses followed the rules described earlier. We
list the other parameter values and postsynaptic potential (PSP) peak
amplitudes at 40°C here, together with the peak amplitudes measured by
Mooney and Prather (abbreviated MP). HVCI3HVCRA: gGABAA

� 0.11
mS/cm2, EGABAA

� �88 mV, IPSP amplitude �0.9 mV (MP: �0.9 �
0.2 mV). HVCRA3 HVCI: gAMPA � 0.034 mS/cm2, EAMPA � 0 mV,
EPSP amplitude 2.0 mV (MP: 2.0 � 0.4 mV). HVCRA 3 HVCRA:
gAMPA � 0.018 mS/cm2, EAMPA � 0 mV. EPSP amplitude 2.2 mV (MP:
2.2 � 1.1 mV).

Poisson synapses

In some simulations, we included Poisson synapses to generate
spiking of a particular frequency or to mimic background synaptic
activity in vivo in a manner similar to that described by Destexhe et
al. (1998a). Each Poisson synapse was an AMPA or GABAA synapse
receiving 1-ms, 1-mM neurotransmitter pulses as Poisson random
events. The values of � and � for these synapses again followed the
rules described earlier. To mimic background synaptic activity, each
HVCI neuron received 20 Poisson AMPA synapses with a mean rate
of 10 Hz and a maximal conductance of 0.02 mS/cm2. This resulted
in 8.8-Hz spiking (measured over 100 s), which is consistent with the
8 � 6 Hz spontaneous firing rate measured by Kozhevnikov and Fee
(2007). Similarly, each HVCRA neuron received 20 Poisson AMPA
(10 Hz, gAMPA � 0.02 mS/cm2) and 20 Poisson GABAA synapses (10
Hz, gGABAA

� 0.1 mS/cm2). This resulted in SD of the membrane
potential of 2.8 mV (measured over 100 s). This pattern of Poisson
synapses—a combination of AMPA and GABAA for HVCRA neurons
and just AMPA for HVCI neurons—mirrors the connectivity of our
model: HVCRA3 HVCRA, HVCI3 HVCRA, HVCRA3 HVCI, but
no HVCI3 HVCI synapses. We acknowledge that there may also be
a significant number of HVCI3 HVCI connections, but Mooney and
Prather (2005) observed only one example. With appropriate param-
eter adjustments, we would expect to see similar results if Poisson
GABAA synapses were included on HVCI neurons.

Sparseness index and spike time

We defined the sparseness of a spike train as S � 1 � D, where D
is the fraction of 10-ms bins containing one or more spikes. We
defined spike time as the time of the peak depolarization following a
crossing of a �15-mV threshold in a positive direction.
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Throughout, we report values as means � SD.

R E S U L T S

Initial model: dynamic behavior of a single bistable cluster

Our current model has evolved from the simple idea that
clusters of HVCRA neurons could act as bistable units in
generating the sparse bursting in HVC. The connectivity of
our model clusters (Fig. 1C) is based on the HVC micro-
circuit described by Mooney and Prather (2005), especially

their observations of depolarizing HVCRA 3 HVCRA and
HVCRA 3 HVCI and hyperpolarizing HVCI 3 HVCRA con-
nections. The recurrent (feedback) excitation of the HVCRA
neurons is the basis for the bistability: the HVCRA cluster has
two stable states: quiescent and persistently spiking. These
states are a fixed point and a stable limit cycle, respectively.

Despite the existence of synaptic connections from HVCX to
HVCRA neurons (Mooney and Prather 2005), we did not give
HVCX neurons a role in HVCRA sparse burst generation in our
model. The observation that adult song production is not
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FIG. 1. Large clusters of HVC neurons with synapses of
physiological strength. A: duration of spiking in response to a
current pulse injected into 50% of the neurons in clusters of
recurrently connected robust nucleus of the arcopallium (RA)–
projecting (HVCRA) neurons with synaptic noise (green), no
synaptic noise (blue), and no adaptation currents or noise (red).
Spiking is truncated at 1 s by the end of the simulations. Each
data point is the mean spiking duration of all the neurons in 3
separate simulations. We show error bars only for points at
which SD �20 ms. B: bistability of a 160-HVCRA cluster
without noise. Membrane potential of a representative HVCRA

neuron. Green arrow: time of excitatory current pulse shifting
the cluster into its persistently spiking state. Red arrow: time of
inhibitory current pulse shifting the cluster back into its quies-
cent state. C: comparison of 2 distinct modes of inhibition for
burst generation in 160-HVCRA, 80-HVCI (HVC interneuron)
clusters. Top: schematics of the 2 mechanisms. Arrowheads,
excitatory connections; dots, inhibitory connections. Middle:
representative HVCRA voltage traces. Bottom: spike time raster
plot of 50% of the HVCI neurons.
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affected by targeted ablation of HVCX neurons, whereas it is
often disrupted by ablation of HVCRA neurons (Scharff et al.
2000), suggests that HVCX neurons are a less critical part of
the premotor pattern-generating circuit (or possibly that there is
much greater redundancy in that part of the circuit with respect
to premotor pattern generation).

We created clusters in which each HVCRA neuron sends
excitatory synapses of physiological strength (see METHODS) to
a randomly selected set of 50% of the other HVCRA neurons
within the same cluster. We chose this degree of connectivity
to provide a high level of mutual excitation without implying
an excessively large number of reciprocally connected HVCRA
neurons within each cluster, since reciprocally connected
HVCRA neurons were not observed by Mooney and Prather
(2005). We prohibited each HVCRA neuron from making a
synapse onto itself or more than one synapse onto the same
postsynaptic neuron.

In Fig. 1A, we show the duration of spiking activity evoked
by a 3-ms, 40-�A/cm2 DC current pulse injected into 50% of
the HVCRA neurons in clusters without inhibitory HVCI neu-
rons, plotted as a function of HVCRA cluster size. The mean
spiking duration increases as a function of the number of
HVCRA neurons. For intermediate cluster sizes, with the nor-
mal adaptation currents (IMs and IMf) present (blue and green
traces), the repetitively spiking state of the cluster is only
transiently stable. The spiking duration reaches �1 s at a
cluster size of 160 HVCRA neurons in the absence of synaptic
noise (Fig. 1A, blue trace), 190 HVCRA neurons in the presence
of synaptic noise (see METHODS; Fig. 1A, green trace), and 60
HVCRA neurons in the absence of the adaptation currents and
noise (Fig. 1A, red trace). These sizes are comparable with the
number of HVCRA neurons, about 200, that Fee et al. (2004)
estimated are coactive at each time in the song, but we will
return to this point in the DISCUSSION. Additionally, the spiking
duration also increases as a function of the percentage connec-
tivity of the cluster (not shown).

In Fig. 1B, we demonstrate the bistability of a 160-HVCRA
cluster without inhibitory HVCI neurons or synaptic noise. At
t � 10 ms (green arrow), we shift the cluster into its persis-
tently spiking state by exciting 50% of the HVCRA neurons
with a 3-ms, 40-�A/cm2 current pulse. This state persists for
�1 s in the absence of further inputs (not shown). In Fig. 1B,
we shift the cluster back into its quiescent state with a 3-ms,
�40-�A/cm2 current pulse into the same 50% of the HVCRA
neurons at t � 110 ms (red arrow).

Mechanisms of inhibition

As described in the INTRODUCTION, HVCI neurons spike and
burst densely throughout the song. Given this sustained activ-
ity, how could HVCI neurons contribute to sculpting HVCRA
activity into sparse bursts? Two hypothetical mechanisms
stand out as extremes along a spectrum. At one end of the
spectrum (an “inhibitory buildup” mechanism), relatively weak
feedback inhibition of HVCRA neurons by HVCI neurons could
exert a hyperpolarizing influence throughout the burst, leading
to a reduced spiking frequency followed by a failure of spiking
and a termination of the burst after several milliseconds (Fig.
1C, left). In this mechanism, relatively small changes in the
strength and timescale of the inhibition strongly influence the
duration of the burst.

At the other end of the spectrum, the HVCRA burst could
occur during a pause in inhibition from HVCI neurons. In this
“inhibitory pause” mechanism, HVCRA neurons are disinhib-
ited during the burst and a strong onset of inhibition after
several milliseconds abruptly terminates the burst (Fig. 1C,
right). Pauses and periods of low-frequency spiking do in fact
occur in the midst of the relatively sustained activity of HVCI
neurons during singing (Hahnloser et al. 2002; Kozhevnikov
and Fee 2007). This mechanism is the basis of our model
using globally connected HVCI neurons, described in the
following text (Fig. 4). In this mechanism, small changes in
the strength and timescale of the inhibition are inconsequen-
tial, but the delay between the onset of the burst and the
onset of the inhibition controls the duration of the burst.
Between the extremes of inhibitory buildup and inhibitory
pause is a range of intermediate mechanisms in which the
onset of inhibition is delayed but relatively weak, so that a
combination of inhibitory strength and inhibitory pause
duration controls the duration of the burst.

A second dichotomy between inhibitory mechanisms is that
between “local” inhibition, in which each HVCI neuron con-
nects to a set of HVCRA neurons in only one part of the HVCRA
network, and “global” inhibition, in which each HVCI neuron
connects to a set of HVCRA neurons throughout the HVCRA
network.

In the present study, we argue that if inhibition does indeed
play a role in HVCRA burst termination, then global inhibition
using the inhibitory pause mechanism is a favored candidate
(although the true mechanism may be somewhere between the
extremes of inhibitory pause and inhibitory buildup). We make
this argument along several lines in the following sections.

Our main goals here are to demonstrate that HVCI neurons
could participate in the HVCRA burst mechanism, to show a
possible mechanism by which they could accomplish this, and
to make experimental predictions on the basis of this mecha-
nism.

Computational implementation of inhibitory mechanisms

In this section, we suggest that the inhibitory pause mecha-
nism is a favored candidate for sparse bursting in HVCRA
neurons because it is more robust than the inhibitory buildup
mechanism to a variety of parameter changes.

To implement these two basic inhibitory mechanisms, we
added HVCI neurons to the 160-HVCRA cluster introduced
previously, in a proportion based on the literature. Although
estimates of the proportions of HVC neuron classes vary
substantially (e.g., Alvarez-Buylla et al. 1988; Kirn et al.
1999), one estimate is that 50% of HVC neurons are RA-
projecting, 25% are X-projecting, and 25% are interneurons
(Nottebohm et al. 1990). Consistent with these proportions,
we created a 160-HVCRA, 80-HVCI cluster. To verify the
robustness of both of these inhibitory models, we included
synaptic noise in the HVCRA and HVCI neurons as de-
scribed in METHODS.

In our implementation of the inhibitory buildup mechanism
(Fig. 1C, left), each HVCRA neuron in the bistable cluster sends
a single synapse to each of nine HVCI neurons and each HVCI
neuron sends a single synapse to each of four HVCRA neurons.
We initiated the burst with a 3-ms, 40-mS/cm2 DC current
pulse into 50% of the HVCRA neurons beginning at t � 20 ms
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(the simulation began at t � �30 ms). For 10 trials with
identical parameters but different random connectivity, the
number of spikes per burst was 3.6 � 1.1 and the burst duration
was 6.7 � 2.3 ms.

In our implementation of the inhibitory pause mechanism
(Fig. 1C, right), each HVCI neuron sends a single synapse to
each of 70 HVCRA neurons but does not receive synapses from
any HVCRA neurons. We excite the bistable HVCRA cluster by
a brief current pulse. It is then inhibited by HVCI neurons that
we begin to excite 6.4 ms later; this inhibition terminates the
burst. To relate this model to our model using globally con-
nected HVCI neurons (see the following text; Fig. 4), we also
excite the HVCI neurons until 7 ms before initiating the
HVCRA burst; thus the HVCRA burst occurs largely during a
pause in the high-frequency presynaptic HVCI spiking. This
excitation is a proxy for the input from other HVCRA neurons
in the network, which are included in our model using globally
connected HVCI neurons. We set the pause to begin 7 ms
before burst initiation to give the inhibition sufficient time to
decay so that it does not interfere with the burst. As in the
inhibitory buildup mechanism, we initiated the burst with a
3-ms, 40-mS/cm2 current pulse into 50% of the HVCRA neu-
rons beginning at t � 20 ms (again, the simulation began at t �
�30 ms). We elicited the relatively high-frequency spiking of
each HVCI neuron before t � 13 ms and after t � 26.4 ms with
a 100-Hz Poisson AMPA synapse with gAMPA � 0.2 mS/cm2

(see METHODS), together with the synaptic noise. This 89-Hz
HVCI spiking frequency (measured over 100 s) is consistent
with the 95 � 40 Hz firing rate of HVCI neurons recorded
during singing (Kozhevnikov and Fee 2007). For 10 trials with
identical parameters but different random connectivity, the
number of spikes per burst was 4.0 � 0.8 and the burst duration
was 5.4 � 1.4 ms. The HVCI 3 HVCRA connections are
sufficiently strong that in the absence of the pause in the
high-frequency HVCI spiking, none of the HVC neurons bursts
(10 trials).

Our implementation of the inhibitory buildup mechanism
was more sensitive than the inhibitory pause mechanism to a
variety of parameter changes. In the inhibitory buildup mech-
anism, longer bursts tended to be associated with weaker or
more rapidly decaying inhibition (Fig. 2, A, B, and D), consis-
tent with a termination of bursting by the hyperpolarizing
influence of inhibition during the burst. The burst duration
decreased with the inhibitory synaptic decay time constant, 1/�
(Fig. 2A; larger values imply longer inhibitory postsynaptic
current decay times). Similarly, the burst duration decreased as
the number of inhibitory synapses sent to HVCRA neurons by
each HVCI neuron increased, either with the normal adaptation
currents present (IMs and IMf; Fig. 2B) or with these currents
absent (Fig. 2D). In the absence of the adaptation currents,
there was an abrupt transition from long to short bursts (Fig.
2D), suggesting an important contribution of these currents to
burst termination. Consistent with this observation, the burst
duration decreased with increasing strength of the adaptation
currents (Fig. 2C). Additionally, the burst duration increased with
the number of excitatory HVCRA–HVCRA synapses per HVCRA
neuron (Fig. 2E), consistent with a competition between inhibition
and excitation in determining the burst duration.

For our implementation of the inhibitory buildup mecha-
nism, the mean burst durations fell within 1 SD of the mean
recorded in vivo (Fig. 2, light gray regions; Kozhevnikov and

Fee 2007) only in a narrow range of values (one to four data
points). By contrast, in our implementation of the inhibitory
pause mechanism, the mean burst durations fell within this
range over a much wider range of values (more than eight data
points in every case, for the same spacing; Supplemental Fig.
S2). This suggests that the inhibitory pause mechanism is the
more robust of the two mechanisms.

Reduced cluster models

Network models of HVC with correct numbers of neurons
and synapses are very slow and inefficient to simulate. There-
fore we created a reduced cluster model that captures the most
essential characteristics of the 160-HVCRA cluster introduced
previously, especially its recurrent excitation and bistability.
This reduced model contains three HVCRA neurons recurrently
connected in a ring by excitatory synapses (Fig. 3A).

We verified that without the HVCI neuron, the reduced
HVCRA cluster is bistable (Supplemental Fig. S3): by exciting
a single neuron of the cluster, we shifted the cluster from its
quiescent state into its persistently spiking state. By injecting a
hyperpolarizing current into the same neuron, we shifted the
cluster back into its quiescent state. The resulting plot (Sup-
plemental Fig. S3A) looks almost identical to the correspond-
ing plot for the 160-HVCRA cluster (Fig. 1B). We verified that
the persistently spiking state persists for �1 s in the absence of
further inputs.

Like the 160-HVCRA, 80-HVCI cluster, the 3-HVCRA,
1-HVCI cluster exhibited a burst of appropriate duration for a
narrow range of inhibitory coupling. In Fig. 3B, we plot the
mean spiking duration of the HVCRA neurons in this cluster as
a function of gGABAA

. At �0.6 mS/cm2, the HVCRA neurons
showed persistent activity, whereas at �0.9 mS/cm2, the
HVCRA neurons spiked only zero to two times. In addition, we
found that both two- and four-neuron clusters are also capable
of generating brief bursts (not shown). The former may have a
smaller parameter regime in which bistability is possible.

A model of HVCRA sparse bursting: the limitations
of local inhibition

In this section, we suggest that a chain network using local
inhibition and an inhibitory buildup mechanism is not a good
model of sparse bursting in HVCRA neurons because it does
not reproduce the sustained HVCI activity observed experi-
mentally during singing and is very sensitive to parameter
changes.

To create such a chain network, we arranged our reduced
clusters in a long chain so that they successively excite each other
to generate a burst sequence; we illustrate this in Fig. 3, C and D.
To initiate the wave of bursting activity, we set IDC � 30 �A/cm2

in the first neuron of the first chain for 5 ms beginning at t � 0 ms.
This “begin song” command may correspond to synaptic input
from an afferent nucleus or the end of another chain within HVC.
The activity then propagates from cluster to cluster until it reaches
the end of the chain. Activity in each cluster is evoked by
excitatory input to its HVCRA neuron 1 (Fig. 3A) from the HVCRA
neuron 2 of the previous cluster, and terminated by inhibitory
input from the local HVCI.

Figure 3D is a raster plot of the spike times of a subset of
HVCI neurons from a total of 250 reduced clusters (three
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HVCRA neurons each) linked in series. For HVCRA3 HVCRA

synapses within each cluster, gAMPA � 1.95 mS/cm2. For those
between clusters, gAMPA � 1.5 mS/cm2. We made the latter
weaker to prevent driving the first neuron of each cluster too
strongly because it receives a synapse not only from within the
cluster but also from the previous cluster (this is an artifact of our
reduced model and is not meant to reflect differences in connec-
tivity within HVC). For HVCRA3HVCI synapses, gAMPA � 0.2
mS/cm2. For HVCI3HVCRA synapses, gGABAA

� 1.45 mS/cm2.
The burst duration was 5.6 � 1.5 ms, with 3.3 � 0.9 spikes per
burst. We injected a 0.5-�A/cm2 DC current into the HVCI
neurons so that they spiked spontaneously at about 8 Hz, consis-
tent with their spontaneous firing rate in awake, nonsinging zebra
finches. The HVCI neurons had identical initial conditions and DC
current, which accounts for the identical timing of the first spike
of most of these neurons.

Significantly, in this model, each HVCI bursts only once as
activity propagates along the chain. By contrast, the HVCI
neurons described by Hahnloser et al. (2002) and Kozhevnikov
and Fee (2007) show an elevated level of spiking and bursting
throughout the song. To correct this discrepancy, we developed
the model of global inhibition described in the next section.
Additionally, this model required fine parameter tuning and was
sensitive to changes in the HVCI 3 HVCRA inhibitory synaptic
strength. For example, a decrease from 1.45 to 1.40 mS/cm2

destabilized the burst sequence, resulting in a mean burst duration
of 27.0 � 20.9 ms, with 8.9 � 6.1 spikes per burst.

A model of HVCRA sparse bursting using global inhibition

In this section, we suggest that a chain network using global
inhibition and an inhibitory pause mechanism (i.e., global

FIG. 2. Burst duration for the inhibitory
buildup mechanism of Fig. 1C as a function
of various parameters. Dark gray lines:
mean � SD. Light gray regions: HVCRA

burst duration (mean � SD) measured by
Kozhevnikov and Fee (2007). A: inhibitory
synaptic decay time constant, 1/� (normal
value: 5.6 ms). B: inhibitory synapses per
HVCI, normal adaptation currents present
(normal number: 9). C: scale factor by which
the maximal conductances of both adapta-
tion currents is multiplied (normal value: 1).
D: inhibitory synapses per HVCI, adaptation
currents absent. E: excitatory synapses per
HVCRA (normal number: 80).
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inhibition with a specific constraint on HVCI–HVCRA connec-
tivity) is a favored candidate for sparse bursting in HVCRA
neurons because it generates appropriate HVCRA bursts and
reproduces the sustained HVCI activity observed experimen-
tally.

Our current model of sparse bursting is depicted in Fig. 4. As
in the previous model, HVCRA neurons are organized into a
chain of bistable clusters. However, HVCI neurons are no
longer functionally localized to these clusters; rather, they are
permitted to receive excitation from, and send inhibition to,
any part of the chain. We initiate the burst sequence by setting

IDC � 20 �A/cm2 in the first neuron of the first chain for 5 ms
beginning at 0 ms. Again, excitation travels through the net-
work via HVCRA 3 HVCRA synapses. The local excitatory
synapses between HVCRA neurons keep each cluster of neu-
rons in an excited state until a subpopulation of global HVCI
neurons terminates its activity.

However, without any constraints on HVCI–HVCRA con-
nectivity, it is not possible for the inhibition to sculpt the
HVCRA activity into a sequence of appropriate bursts (not
shown). With weak inhibition (e.g., gGABAA

� 0 or gGABAA
�

0.01 mS/cm2), HVCRA bursts failed to terminate, entering a

FIG. 3. Chains of clusters with locally connected
HVCI neurons produce sparse bursting in HVCRA

neurons, but do not produce sustained activity in
HVCI neurons beyond their low-frequency sponta-
neous spiking. A: schematic of the reduced cluster
model used in the sparse bursting chain network,
consisting of 3 recurrently excitatory HVCRA neu-
rons (light blue) and one local HVCI neuron (dark
blue). B: burst duration for the reduced cluster as a
function of the inhibitory conductance gGABAA

;
GABAA, 	-aminobutyric acid type A. Because sim-
ulations end at t � 110 ms, the maximum possible
duration is 100 ms. For every point, SD 
2.1 ms.
C: schematic of the sparse bursting chain network.
Activity of the network is initiated in the first
HVCRA neuron of the first cluster by a DC current
pulse. D: raster plot of the spike times of a subset of
HVCRA and HVCI neurons in a chain of 250 clus-
ters. Each row represents the spike times of one
neuron.

A

B C

D

FIG. 4. Chains of clusters with globally
connected HVCI neurons and constrained
HVCI–HVCRA connectivity produce sparse
bursting in HVCRA neurons and sustained
activity in HVCI neurons, consistent with
experimental observations. A: schematic il-
lustrating the constraint on HVCI–HVCRA

connectivity that permits normal burst prop-
agation. Because the representative HVCI

receives an excitatory synapse from the clus-
ter shown, it is not permitted to make inhib-
itory synapses onto the clusters shown in
white. The diagram assumes that the wave of
activity propagates from left to right along
the HVCRA network. B: raster plot of the
spike times of a subset of HVCRA and HVCI

neurons from a simulation of 300 HVCI

neurons and 200 clusters of 3 HVCRA neu-
rons. C: portion of voltage trace of HVCRA

neuron 14 from the same simulation.
D: subset of HVCRA neurons in another
simulation, in which one of these neurons
(magenta) was in a cluster that escaped in-
hibition to fire a longer burst.
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state of persistent activity. With intermediate inhibition (e.g.,
gGABAA

� 0.02 to 0.04 mS/cm2), HVCRA neurons showed some
combination of variable-duration bursting, persistent activity,
and premature termination of the burst sequence. With strong
inhibition (gGABAA

� 0.05 to 3.0 mS/cm2), the burst sequence
terminated within two clusters of the beginning of the chain: a
burst in one cluster caused inhibition in a downstream cluster
before that cluster was excited. There was no value of gGABAA

for which HVCRA neurons showed bursts with a consistent,
correct number of spikes.

A solution to this problem is to constrain each HVCI neuron
not to make inhibitory synapses onto any cluster from which it
receives an excitatory synapse or onto clusters within some
number of clusters downstream of one from which it receives
an excitatory synapse (Fig. 4A). We refer to these downstream
clusters as an HVCI “downstream connectivity gap.” A down-
stream connectivity gap of at least one cluster is necessary to
allow enough time for the inhibition on HVCRA neurons to
decay before excitation arrives from an upstream cluster. When
the downstream connectivity gap is zero, only the first cluster
spikes. To reduce the influence of residual inhibition on burst
duration and propagation speed (see Fig. 5), we used a larger,
seven-cluster downstream connectivity gap. The HVCI neuron
is constrained not to make excitatory synapses onto any cluster
from which it receives an excitatory synapse, so that the
HVCRA neurons have time to burst before the inhibition arrives
to terminate the bursts. We generated this synaptic connectivity
pattern by the following algorithm.

1) Create a new HVCI neuron.

2) Select a candidate HVCRA neuron to make an excitatory
synapse onto the HVCI neuron. If there exists an inhibitory
synapse from the HVCI neuron onto an HVCRA neuron in the
candidate neuron’s cluster or onto an HVCRA neuron that is
within seven clusters downstream of the candidate HVCRA
neuron, select a new candidate HVCRA neuron. Repeat this
until an appropriate HVCRA neuron is found.

3) Select a candidate HVCRA neuron to receive an inhibitory
synapse from the HVCI neuron. If there exists a synapse onto
the HVCI neuron from an HVCRA neuron in the candidate
neuron’s cluster or from an HVCRA neuron that is within seven
clusters downstream of the candidate HVCRA neuron, select a
new candidate HVCRA neuron. Repeat this until an appropriate
HVCRA neuron is found.

4) Repeat steps 2 and 3 until all of the synapses onto and
from the HVCI have been created.

5) Repeat steps 1–4 until all of the HVCI neurons have been
created.

As a result of this constraint on connectivity, the wave of
excitation is preceded and followed by inhibition, but not
interrupted by it, despite the sustained activity of the HVCI
population. The HVCI neurons presynaptic to a given HVCRA
neuron are all silent at about the time of the HVCRA burst and
shortly before; this is functionally equivalent to the pause in
HVCI activity in our implementation of the inhibitory pause
mechanism in Fig. 1C.

In addition, we found that neurons in the last cluster of the
chain remained persistently active, since there are no clusters
downstream of these clusters to inhibit them via the HVCI

FIG. 5. Effects of HVCI–HVCRA con-
nectivity on burst duration and propagation
speed. Burst duration increases (A) and burst
propagation speed decreases (B) as a func-
tion of the HVCI upstream connectivity gap.
Burst duration decreases (C) and burst prop-
agation speed increases (D) as a function of
the HVCI downstream connectivity gap.
Burst propagation terminated prematurely
(293 ms) for the simulation with a down-
stream connectivity gap of 4.
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neurons. To prevent this persistent activity, we added addi-
tional connections from the last two HVCRA clusters to the
HVCI population.

Figure 4B shows the spike times of a subset of HVCRA and
HVCI neurons in a simulation containing a total of 300 HVCI

neurons and 200 clusters of 3 HVCRA neurons (i.e., 33% HVCI

and 67% HVCRA neurons) with this connectivity pattern. We
obtained similar results when the numbers of HVCRA and
HVCI neurons were the same. We also obtained similar results
with 2 or 4 neurons per cluster. HVCRA2 of each cluster sends
an excitatory synapse to HVCRA1 of the next. Each HVCI

neuron sends 100 synapses to, and receives 100 synapses from,
HVCRA neurons. For HVCRA3 HVCRA synapses within each
cluster, gAMPA � 1.0 mS/cm2. For those between clusters,
gAMPA � 0.5 mS/cm2. We made the latter weaker for the
reason described in the previous section. For HVCRA3 HVCI

synapses, gAMPA � 0.1 mS/cm2. For HVCI 3 HVCRA syn-
apses, gGABAA

� 3.0 mS/cm2.
To prevent persistent activity at the end of the chain, ran-

domly selected HVCRA neurons from the last two clusters
make a total of 300 additional synapses (gAMPA � 0.1 mS/cm2)
onto randomly selected HVCI neurons. The average burst
duration was 4.3 � 1.4 ms, with 3.2 � 0.6 spikes per burst.
Figure 4C shows a portion of the voltage trace of one of the
HVCRA neurons in this simulation.

Because of the element of randomness in generating
HVCI 3 HVCRA connectivity in the model, in some simula-
tions the spiking in one or more HVCRA clusters was not as
rapidly terminated by inhibition. In Fig. 4D, we show an
example neuron from such a cluster in a simulation containing
90 HVCI neurons and 60 clusters of 2 HVCRA neurons, with 30
synapses to and from each HVCI neuron. The single HVCRA
neuron that spikes over an unusually long duration in the
experiments of Hahnloser et al. (2002; their Fig. 2B) and
Kozhevnikov and Fee (2007; their Fig. 2A) has a lower spiking
frequency than this. However, it is sufficiently reminiscent that
we suggest the possibility that both cases involve a failure of
inhibition.

In this model, the duration of an HVCRA burst is strongly
influenced by the timing of inhibition. Most straightforwardly,
a larger HVCI upstream connectivity gap (i.e., the number of
clusters that an HVCI is not permitted to inhibit upstream of
one from which it receives excitation; Fig. 4A) leads to a longer
delay before a burst is terminated and therefore a longer burst
(Fig. 5A). Longer burst durations also result from smaller
downstream connectivity gaps (Fig. 5C). This may be related
to the fact that smaller downstream connectivity gaps cause
slower burst propagation (Fig. 5D): if the downstream cluster
bursts later than usual, then its inhibition of the upstream
cluster via HVCI neurons should occur later than usual. The
slower burst propagation may be due to residual inhibition
delaying the downstream cluster in reaching its spike thresh-
old. Larger upstream connectivity gaps also result in slower
burst propagation (Fig. 5B). This may be due to the redistri-
bution of the HVCI3 HVCRA synapses: when there are fewer
HVCI3 upstream HVCRA synapses, there are more HVCI3
HVCRA synapses to clusters just downstream of the down-
stream connectivity gap. This may result in more residual
inhibition, which may delay the downstream clusters in reach-
ing their spike threshold.

Sparse bursting without clusters or unidirectional
HVCRA chains

The model does not fundamentally rely on a cluster organi-
zation nor on the unidirectionality of the HVCRA chain to
produce a sequence of sparse bursts. For example, in one set of
simulations (not shown), we reduced the clusters in our model
to 2 reciprocally connected HVCRA neurons and connected
these clusters bidirectionally (gAMPA � 0.75 mS/cm2 for all
synapses), effectively creating a chain of 400 bidirectionally
connected HVCRA neurons while retaining the HVCRA–HVCI
connectivity. Stimulating the first cluster continued to produce
a sequence of bursts (burst duration, 3.9 � 1.3 ms; spikes per
burst, 3.0 � 0.7). Unidirectionality of burst propagation was
maintained by the HVCRA–HVCI connectivity: stimulating the
last neuron of the chain produced a burst in only the last 2
neurons (not shown). This is expected, since there is no gap in
the reverse direction to allow the inhibition of the HVCRA
neurons to decay before excitation arrives from an upstream
cluster. Thus we expect this unidirectionality of burst propa-
gation to depend on the asymmetry of the upstream and
downstream connectivity gaps (Fig. 4A).

Similarly, we created a short chain model of 20 clusters with
physiological synaptic strengths, in which the separate identity
of the clusters was all but lost by their interconnectivity. Each
cluster contained 80 HVCRA neurons, each of which sent
AMPA synapses to a set of 40 other HVCRA neurons in its
cluster, 40 in the previous cluster, and 40 in the next cluster.
Thus the connectivity along the chain had no directionality and
the connectivity was less one of a chain of clusters and more
one of a network of HVCRA neurons with local random
connections. Each of the 1,600 HVCI neurons sent GABAA
synapses to a set of 80 HVCRA neurons and received AMPA
synapses from a set of 20 HVCRA neurons. The upstream
connectivity gap was one cluster and the downstream connec-
tivity gap was 10 clusters. The connectivity of the clusters in
this version of the model allowed us to control the burst
duration more finely: setting the upstream connectivity gap to
1 rather than 0 caused the HVC neurons to spike 4.3 � 0.9
times in 5.3 � 1.3 ms, longer than the bursts in our previous
model. To prevent persistent activity at the end of the chain,
each HVCRA neuron in the last cluster sent AMPA synapses to
a set of 30 HVCI neurons. In every case, we prohibited a
neuron from making a synapse onto itself or more than one
synapse onto the same postsynaptic neuron. We initiated ac-
tivity in the first cluster with a 4-ms, 40-�A/cm2 current pulse
in 50% of the HVCRA neurons, beginning at t � 0 ms.

Experimental predictions of the sparse bursting model

In Fig. 6, we show experimental predictions of the sparse
bursting model. Since GABAA synapses play a critical role in the
model, the model predicts that manipulations that influence
GABAA synaptic transmission can profoundly affect HVC’s be-
havior. When we blocked inhibitory synapses (i.e., set gGABAA

�
0), the bursts of HVCRA neurons began normally but failed to
terminate, entering a state of persistent activity. The prediction of
normal burst onset will hold only if blocking GABAA synapses
does not in itself lead to runaway excitation in HVC before the
onset of singing.

Figure 6A shows the effect of varying gGABAA
on the sparse-

ness of spiking in a version of the model containing 90 HVCI
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neurons and 60 clusters of 3 HVCRA neurons, illustrated with
the burst duration, spikes per burst, and the sparseness index
defined in METHODS. We calculated burst duration and spikes
per burst over the time interval from the beginning of current
injection into the first neuron (0 ms) to approximately the end
of the last burst in the chain in the normal case (230 ms). For
very low values of gGABAA

, HVCRA neurons entered a state of
persistent activity. However, HVCRA neurons showed rela-
tively short, consistent bursts over a wide range of gGABAA

values from about 0.1 to �3.0 mS/cm2. This robustness is due
to the HVCI–HVCRA connectivity pattern described earlier,
which results in an inhibitory pause during which bursting can
occur.

We also found that the interspike interval (ISI) distribution
may contain a signature of the HVCRA 3 HVCI connectivity
pattern, if sufficiently many HVCI spikes are recorded. Since
each HVCI is constrained not to receive excitation from any
cluster to which it sends inhibition, or from clusters within
seven clusters upstream of one to which it sends inhibition, we
would expect ISIs corresponding to this nearly eight cluster
gap in connectivity, and less, to be underrepresented in the ISI
distribution. Since the propagation speed along the chain is
0.26 cluster/ms, we would expect a dip in the ISI distribution
below 31 ms. Figure 6B (top) shows the ISI distribution for all
spike times of all HVCI neurons in the simulation illustrated in
Fig. 4B. Figure 6B (bottom) shows the ISI distribution of
another set of HVCI neurons. Each HVCI neuron in this second
set was driven by exactly the same set of HVCRA bursts and
received exactly the same number of HVCRA 3 HVCI syn-
apses, but the HVCRA 3 HVCI connectivity pattern was
completely random. These HVCI neurons did not send syn-
apses to HVCRA neurons. Figure 6C shows the same ISI
distributions with altered axis limits, to accentuate their differ-
ences. Unlike the random case (bottom), the constrained case
(top) resulted in a histogram with a prominent dip in ISIs below
30 to 35 ms, corresponding to the gap in HVCRA 3 HVCI
connectivity. Experimentally, such a histogram should include

ISIs only from the period corresponding to singing and not
from periods of spontaneous activity. The model predicts that
both the size of the connectivity gap and the propagation speed
of the waves will determine which ISIs are underrepresented in
the histogram.

Additional predictions of the inhibitory pause mechanism

The role of inhibition in the sparse bursting model is similar
to that in the inhibitory pause mechanism of Fig. 1C. If sleep
replay or BOS playback-evoked activity in HVCRA neurons is
the result of the same mechanism as singing-related bursting
(see DISCUSSION), then the inhibitory pause mechanism makes
two predictions that could be tested in head-fixed or anesthe-
tized birds. First, under voltage clamp at the AMPA reversal
potential (0 mV), an HVCRA neuron will have a background of
outward, hyperpolarizing current during the fictive singing,
with a dip shortly before and during the time of the burst
(Fig. 7A). Second, chloride loading should result in a back-
ground of spiking during the fictive singing by making the
GABAA synapses functionally excitatory (Fig. 7B).

D I S C U S S I O N

We have presented a model of sparse bursting based on
inhibition, recurrent excitation, and bistability. This model
builds on the observation by Hahnloser et al. (2002) and
Kozhevnikov and Fee (2007) of sparse bursting in HVCRA
neurons and on their hypothesis that HVCRA neurons form a
chainlike organization in which neuronal ensembles burst in
sequence at every moment of the song, driving RA neurons to
burst in sequence (Fee et al. 2004).

The chainlike organization of our bistable clusters is remi-
niscent of synfire chains, which have been discussed elsewhere
(Abeles 1982, 1991; Diesmann et al. 1999; Hermann et al.
1995). Recently, chain models have been proposed for HVC
(Fiete et al. 2005; Jin et al. 2007; Li and Greenside 2006), also

××

%

×

××

%

×

A B

C

FIG. 6. Sparse bursting model predic-
tions: A: burst duration (top), spikes per
burst (middle), and sparseness (bottom) as a
function of gGABAA

. Solid lines: mean.
Dashed lines: mean � SD. At gGABAA

� 0.4
mS/cm2, the burst duration is 5.0 � 0.3 ms
and the number of spikes per burst is 3.6 �
0.1. B and C: HVCI interspike interval (ISI)
distributions may differentiate between con-
nectivity patterns. B, top: ISI distribution of
HVCI neurons in the simulation shown in
Fig. 4B, connected according to the rule
described herein. Bottom: ISI distribution of
HVCI neurons receiving completely random
synapses from the same set of HVCRA neu-
rons. C: the same ISI distributions, with
lower y-axis and higher x-axis limits. Top:
ISI distribution of HVCI neurons connected
according to the rule described herein shows
a characteristic dip. Bottom: ISI distribution
of HVCI neurons receiving random synapses
lacks this dip.
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building on the work of Fee et al. (2004). Although our model
includes chainlike networks, we have focused on the role of
bistability and inhibition rather than chains. Unlike other chainlike
models, our model postulates a central role for inhibitory inter-
neurons in sparsely bursting telencephalic premotor networks,
HVC in particular. This mechanism is related to those of central
pattern generators and cortical networks, which make use of
inhibition, recurrent excitation, and bistability (McCormick 2005;
Shu et al. 2003; Yuste et al. 2005).

Inhibitory interneurons also played a key role in the Drew
and Abbott (2003) model of song selectivity and sequence
generation in HVC, although this role was not in terminating
sparse HVCRA bursts. Their model was limited by its depen-
dence on a long afterhyperpolarization in HVCRA neurons and
by the fact that its HVCRA neurons were active only during
extrinsically generated excitatory pulses applied every 75 to
100 ms.

Our sparse bursting model is distinguished from other chain-
like models by a number of key assumptions and predictions.

1) Our model assumes that a large proportion of HVCRA
neurons participate in a local connectivity of recurrent excita-
tion with other HVCRA neurons that are nearby in the network,
which is the basis of the bistability.

2) Our model assumes that each HVCI neuron is constrained
not to make inhibitory synapses onto HVCRA neurons within
some distance upstream and downstream of one from which it
receives an excitatory synapse (Fig. 4A). This gives the
HVCRA neurons time to burst before the inhibition arrives and
reduces the influence of residual inhibition on burst duration
and propagation speed (Fig. 5).

3) Our model assumes that an additional mechanism acti-
vates HVCI neurons at the end of the HVCRA burst sequence to
prevent persistent activity at the end of the chain. In this model,
we added additional connections from HVCRA neurons at the
end of the chain to the HVCI population. In the model pre-

sented in our companion paper (Gibb et al. 2009), which
includes neural feedback via nucleus uvaeformis (Uva), these
connections are replaced by ones from Uva to HVCI neurons.

4) As a result of the HVCI–HVCRA connectivity, our model
predicts that every HVCRA neuron that participates in sparse
bursting receives a background of inhibition throughout the
song, with a reduction shortly before and during the time that
it bursts (Figs. 1C and 7A). If the mechanism of sparse bursting
during sleep or BOS playback is sufficiently similar to that
during singing (which is not certain, given the involvement of
NIf [nucleus interface of the nidopallium] in the former but not
the latter; Cardin et al. 2005; Hahnloser and Fee 2007), then
voltage-clamp or chloride loading experiments can be used to
test this prediction (Fig. 7). During fictive singing, an HVCRA
neuron will have a background of outward current, with a dip
shortly before and during the time of the burst (Fig. 7A), and
chloride loading of an HVCRA neuron will result in a back-
ground of spiking (Fig. 7B).

5) Our model predicts that, if GABAA synapses are blocked,
excited groups of HVCRA neurons will enter a state of persis-
tent activity, whether in vitro or in vivo. How long this activity
will last depends on the size of the groups (Fig. 1A), the
percentage connectivity of the HVCRA neurons within groups,
and the strength of voltage-dependent hyperpolarizing currents
(Figs. 1A and 2, B and C) and neurotransmitter-activated
hyperpolarizing currents (e.g., GABAB; Dutar et al. 1998).
However, this effect will be seen only if blocking GABAA
synapses does not itself evoke a high level of song-independent
activity. To evoke this persistent activity in vitro, it is neces-
sary to excite a sufficiently large fraction of the HVCRA
neurons in a cluster or the functional equivalent of a cluster. In
vivo, our model predicts that song-related HVCRA bursts will
be initiated normally but fail to be rapidly terminated.

6) Our model predicts that HVCI ISIs during song will have
a distribution resembling Fig. 6C, top (with a dip in the

A B

FIG. 7. Experimental predictions from the
inhibitory pause mechanism of Fig. 1. A: cur-
rent in a representative HVCRA neuron under
voltage clamp at the AMPA reversal poten-
tial (0 mV). The neuron showed a back-
ground of outward, hyperpolarizing current,
with a dip during and before the time of the
burst. B: membrane potential of a represen-
tative HVCRA neuron from a different sim-
ulation, when we set the GABAA reversal
potential to �21 mV to simulate chloride
loading. The neuron showed a background of
spiking, with a dip in membrane potential
before the burst. In both A and B, the HVCI

pause lasted from t � 23 to 36.4 ms, the
depolarizing DC current pulse into HVCRA

neurons lasted from t � 30 to 33 ms, and the
simulation began at t � �20 ms.
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frequency of occurrence of certain ISIs), more than Fig. 6C,
bottom. Which ISIs will be underrepresented in the histogram
depends on both the burst propagation speed and the size of the
HVCI connectivity gap. Since spontaneous activity between
song bouts may influence the ISI distribution, the ISIs for
such a test should be taken from HVCI neurons only during
the period corresponding to singing. Additionally, it is
possible that a version of the model could be developed in
which the HVCI 3 HVCRA connectivity pattern is con-
strained but the HVCRA 3 HVCI connectivity pattern is
random. In such a model, HVCI neurons would not be
expected to have this ISI distribution.

Potential role for a Ca2� current in HVCRA bursting

Under normal conditions, injection of depolarizing current
into the soma of an HVCRA neuron does not evoke Ca2� spikes
or any evidence of bursting (Dutar et al. 1998; Kubota and
Taniguchi 1998; Long and Fee 2006; Mooney and Prather
2005; Shea 2004). Consequently, we formulated a model in
which bursting is not intrinsic to HVCRA neurons but instead
arises in the microcircuitry of HVC. However, recent prelim-
inary work shows that Ca2� spikes, which appear to be of the
L-type, are elicited by somatic depolarization of HVCRA neu-
rons in the presence of a Na�-channel blocker (Long and Fee
2006). The same study demonstrates that sleep bursts of
HVCRA neurons are augmented by an agonist of the L-type
Ca2� current. These results suggest that an L-type Ca2�

current is present in HVCRA neurons and is capable of influ-
encing bursting. If this current proves to be essential to the
bursting mechanism of HVCRA neurons, it may play a com-
plementary role to inhibition and recurrent excitation.

If this current merely serves to enhance the excitation of
postsynaptic HVCRA neurons, then we would expect augment-
ing it to have a similar effect to increasing the number or
strength of excitatory synapses onto HVCRA neurons in our
model. In this case, the presence of the current may not
fundamentally alter our predictions. By contrast, if inactivation
of a Ca2� current, rather than inhibition mediated by HVCI
neurons, provided the basis for burst termination, then our
predictions would have to be revised. In particular, bursts
would continue to terminate even in the absence of inhibition
(persistent activity would not be observed). However, it is
unlikely that inactivation of an L-type Ca2� current is respon-
sible for terminating the bursts, since this type of current
inactivates slowly (Catterall et al. 2005).

Even if intrinsic currents are identified that provide the basis
for burst termination, our proposed inhibitory mechanism
could still play important roles: for example, it could enhance
the temporal precision of the bursts and prevent excitatory
inputs from evoking activity outside the normal burst time.

Cluster size

Fee et al. (2004) estimated that about 200 HVCRA neurons
may be coactive at each time in the song motif, which is similar
to the number of neurons in our large clusters with physiolog-
ical synaptic strengths. However, this may be an overestimate,
since the study on which they based it (Wang et al. 2002) did
not use stereological methods for reconstructing total cell
number (JR Kirn, personal communication; West 1999). HVC

contains an average of about 40,000 to 50,000 neurons per
hemisphere (Burek et al. 1991, 1997; Nordeen and Nordeen
1988, 1989; Ward et al. 1998).

Using the estimate that half of HVC neurons are RA-
projecting (Nottebohm et al. 1990) and assuming that only half
of the HVCRA neurons participate in syllable networks, we
arrive at an estimate of 10,000 to 12,500 participating HVCRA
neurons. Taking the motif duration to be about 0.5 to 1 s (Fee
et al. 2004; Immelman 1969; Price 1979) and the average burst
duration to be 5 ms (Kozhevnikov and Fee 2007), we calculate
that about 50 to 125 HVCRA neurons may be coactive at each
time in the song motif. In a chain framework, the propagation
speed implied by these figures is about 10 to 25 HVCRA
neurons per millisecond. Thus if the number of HVCRA neu-
rons per cluster is 160, cluster activations must be staggered by
about 6 to 16 ms to achieve such slow propagation. The result
presented in Fig. 5D suggests that a smaller HVCI downstream
connectivity gap may promote slower propagation. Alterna-
tively, clusters could be smaller and the synaptic response of
HVCRA neurons could be enhanced by a dendritic Ca2� current
(Jin et al. 2007; Long and Fee 2006) to achieve an equivalent
synaptic effect.

Additionally, our chain model with physiological synaptic
strengths suggests that the sparse burst mechanism does not
fundamentally rely on a cluster organization; the important
elements are recurrent local excitation among HVCRA neurons
and patterned inhibition from HVCI neurons.

A possible role for developmental plasticity in the
establishment of HVCI 3 HVCRA connectivity

What developmental mechanism could generate the pattern
of HVCI 3 HVCRA connectivity shown in Fig. 4A? We
suggest that a novel form of timing-dependent synaptic plas-
ticity at inhibitory synapses could serve this role. In this
proposed model, early in development, HVCRA 3 HVCI and
HVCI 3 HVCRA synapses are weak or absent and sustained
(nonsparse) spiking activity propagates along chains of recur-
rently excitatory HVCRA neurons, terminated by slow hyper-
polarization. HVCRA 3 HVCI synapses are gradually added
and/or strengthened with time. As they strengthen, subsets of
them become strong enough that concurrent spiking in the
presynaptic HVCRA neurons can elicit spiking in the postsyn-
aptic HVCI neuron.

Additionally, HVCI 3 HVCRA synapses begin weak and
follow a specific timing-dependent synaptic plasticity rule: if
the presynaptic HVCI neuron spikes within a few tens of
milliseconds before or a few milliseconds after the postsynap-
tic HVCRA neuron, the inhibitory synapse is weakened. If the
HVCI neuron spikes outside this time window, the synapse is
strengthened. For some period of time after the induction of
plasticity, the synapse is resistant to further induction, so that
only the first spikes of the propagating activity are involved in
triggering plasticity. We suggest that over many bouts of
propagation, a plasticity mechanism like this could generate
the HVCI3 HVCRA connectivity required by our model. Our
proposed plasticity rule is similar to, although distinct from,
various forms of timing-dependent plasticity that have been
observed at excitatory and inhibitory synapses (Dan and Poo
2006; Haas et al. 2006; Holmgren and Zilberter 2001; Woodin
et al. 2003).
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