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Editorial Focus

Surprising Twist on Auditory Representation. Focus on: “What’s That Sound?

Auditory Area CLM Encodes Stimulus Surprise, Not Intensity

or Intensity Changes”

Timothy Q. Gentner

Department of Psychology, University of California, La Jolla, California

The concept of sensory representation is central to psycho-
logical theories of perception and cognition and to neurobio-
logical models of sensory coding. Understanding exactly what
a neural response “represents,” however, turns out to be a
difficult question to answer fully—particularly for neurons
many synapses away from the point of sensory transduction. A
recent paper by Gill and colleagues (2007) takes a large step
forward in understanding stimulus representation in the audi-
tory system. To appreciate the contribution this paper makes,
it’s helpful to have a little background.

To a first approximation, sensory systems and the receptive
fields they comprise are organized hierarchically. The concept
of a “receptive field” was first applied to the visual system
(Hartline 1938) to describe the sensitivity of optic nerve fibers
to light shined on spatially restricted portions of the retina.
While neurons in primary visual cortex inherit the spatial
receptive fields of the retinal projections, they respond to
oriented bars or edges rather than spots of light. At higher
levels in the visual pathway, cells respond best to complex
visual patterns such as faces or other objects (Suzuki et al.
2006; Tanaka 2003). A similar representational hierarchy exists
in the ascending auditory system, where the frequency tuned
responses of primary fibers in the eighth nerve give rise to
increasingly complex “objects” at more central levels (Gentner
and Margoliash 2003). Phenomenological descriptions notwith-
standing, the responses of neurons beyond primary auditory cor-
tex have proven very difficult to model. Currently the best recep-
tive field models typically account for ~25-30%, or less, of a
neuron’s response to a stimulus (e.g., Sen et al. 2001). To improve
the receptive field models for high-level sensory neurons, one
might devise a better function to map the stimulus on to the spike
train—most models rely on linear regression (cf. Sharpee et al.
2006). Alternatively, as Gill and colleagues did, one might devise
a better representation of the input stimulus (e.g., Rust et al. 2006).
Their results suggest that we need to change the way we’ve been
thinking about time in the auditory system.

Contemporary models of high-level auditory neural re-
sponses are called “spectro-temporal receptive fields” (or
STRFs for short) because they are defined in terms of the
average dynamic power spectrum of the stimulus that precedes
each spike (Aertsen and Johannesma 1981). The original STRF
conception, and more recent variations (e.g., Kowalski et al.
1996; Theunissen et al. 2000), treat the temporal and spectral
dimensions of the stimulus similarly. That is, a pattern in the
stimulus that plays out across time is given no greater (or
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lesser) weight than a pattern that plays out across frequency
bands. Gill et al. devised a novel representation for complex
natural signals that takes into account the unfolding temporal
structure of the stimulus. Instead of considering the magnitude
of the dynamic power spectrum (i.e., the power at each fre-
quency and each point in time) as the input to a neuron, they
converted the sound spectrogram to a large set of conditional
probabilities, where the value at each frequency at any given
time is a function of the likelihood that the observed power at
that frequency is preceded by a particular pattern of power at
neighboring frequencies.

To help think about this, imagine that you are sitting at a
stop light. The light is red, the light is red, the light is red, and then
suddenly it snaps to green. If one samples the state of the traffic
light at regular time intervals, there are three possible states for
each pair of sequential intervals: the light is red in both intervals,
the light is green in both intervals, or the light is red and then
green. At any given time, the chance of the red-then-green
condition is very low. Gill et al. used an analogous representation
of conditional probabilities across multiple frequency bands of
an acoustic stimulus based on the power in each spectral band
instead of the color of the traffic light. This way of representing
the stimulus, which they call the “surprise” representation after
similar ideas for visual scenes (Itti and Baldi 2005), radically
altered the input to the receptive field model by according events
with the lowest conditional probabilities the highest representa-
tional weight. They then test the efficacy of models generated
from this representation in predicting the responses of neurons at
multiple points in the ascending auditory system of a songbird,
comparing their predictions to those for classical STRFs and
STRFs derived from spectro-temporal derivatives. Comparisons
to the spectral derivative (taken with respect to time) enable the
authors to rule out the possibility that the magnitude of a spectro-
temporal change, the auditory equivalent of a high-contrast visual
edge, drives the neurons’ responses.

The STRFs generated from the surprise representation yield
significantly better receptive field models in both field L, the
avian homologue to layer 4 of primary auditory cortex in
mammals, and in caudo-lateral mesopallium (CLM), a second-
ary forebrain-auditory region, and by no small amount. In field
L, the surprise-STRF bettered the classic STRF by an average
of 24%, and in CLM, the surprise-STRF trumped the “old-
fashioned” models by a whopping 67% on average. The
surprise-STRFs outperformed the derivative-STRFs by signif-
icant margins as well. These are not marginal quantitative
gains. These are categorical improvements that show the firing
rates of high-level sensory neurons depend more on the prob-
ability of natural stimulus features than on stimulus intensity or
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intensity changes. Interestingly, at nucleus mesencephalious
lateralis, pars dorsalis (MLD), a region homologous to the
inferior colliculus in mammals, the surprise-STRFs are no
different from the classic STRFs, suggesting that the temporal
expectancies are themselves the product of computations added
to the system in high-level regions.

The functional interpretations and details of this remarkable
discovery may take some time to work out of course. For
instance, it may be possible to introduce measures that more
accurately capture realistic expectancies across multiple stim-
ulus dimensions (e.g., Dubnov 2006). Likewise the source for
the posterior probabilities that constrain expectancy need to be
explored. But these are the kinds of questions that naturally
emerge from any important discovery. Significant progress in
understanding receptive fields has always paved the way for
broader level understanding of sensory systems, and the clear
demonstration by Gill and colleagues that expectations and
natural statistics form a key part of the auditory neural code
promises to follow in that tradition.
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